
Not including Delphi itself,
there are four different

Windows programming languages
which might be termed
‘mainstream’ development
environments. These are C, C++,
Pascal and Visual Basic. Yes, I know
that C++ is a superset of C, but it’s
rather a dangerous over simplifica-
tion to lump C and C++ together.
I’ve heard it said recently that pro-
grammers can pick up C++ more
easily if they haven’t had any pre-
vious exposure to C, and from my
own experience there’s certainly
some truth in that point of view!

In the coming months, I’ll be
discussing Delphi from the view-
point of a developer coming from
one of these four camps. This time
we kick off with Pascal and in the
next issue we’ll be looking at Delphi
from the viewpoint of a Visual
Basic Developer.

Delphi For
Pascal Programmers
You might find it surprising that
I’ve included Pascal in the above
list. After all, Delphi is just Pascal
hiding behind a pretty user inter-
face isn’t it ? Well, no – not really.

For starters, Delphi uses
Borland’s Object Pascal, an object-
oriented Pascal dialect that offers
much of the power of C++ in a far
simpler, more manageable
language. If you happen to be a
seasoned Borland Pascal devel-
oper, and know the Windows API
like the back of your hand, then
you’re in good shape for getting
into Delphi. You’ll find, however,
that Borland have made a number
of changes and enhancements to
the language, making the new
Pascal dialect even more powerful
than it was previously.

If you’re at all familiar with the
Borland Pascal development

Moving Up: Borland Pascal
by Dave Jewell

In this article, Dave looks at some of the issues
involved in moving to Delphi from Borland Pascal

system, you should have little diffi-
culty in getting to grips with Delphi.
Beneath Delphi’s friendly visual de-
velopment environment lurks the
same compiler that you’re familiar
with. If you want to merely use
Delphi as a “straight” Pascal com-
piler, there’s nothing to stop you
doing so. You can use it to compile
and build your existing Pascal
projects. However, it goes without
saying that this approach misses
out on all the major productivity
benefits that come from using a
visual development tool and the
feature-rich component library.

This article is primarily
concerned with the language
changes that Borland incorporated
into Delphi’s particular version of
the Pascal compiler. Although
backwards-compatible with exist-
ing code, the new compiler incor-
porates a number of important
language enhancements that we’ll
be looking at here.

New Language Features
With Delphi, Borland have intro-
duced a number of new language
features, many of which relate to
the Object Browser interface.
These language features generate
additional categories of run-time
information which are read by the
Object Browser and used to fill in
the browser window with proper-
ties and events that relate to the
currently selected object.

The Class Declaration
The single most important
language enhancement in Delphi’s
Pascal implementation is the intro-
duction of the class declaration.
Let’s take a look at the class decla-
ration of the Shape component,
reproduced in Listing 1.

You can see that, superficially, it
looks very much like the old-style

object declaration used in
previous versions of the compiler
and, in fact object declarations are
still supported. You must,
however, use the new style class
declaration when creating Delphi
components.

The declaration starts off with
the name of the new class, an
equals sign, (“=”), the reserved
word class and the name of the
parent class in parentheses. Like
object declarations, a class
declaration can contain both
private and public sections.

In essence, there are now four
different levels of protection within
Delphi Pascal. In order of increas-
ing accessibility, these are:

TShape = class(TGraphicControl)
 private
 FShape: TShapeType;
 FReserved: Byte;
 FPen: TPen;
 FBrush: TBrush;
 procedure SetBrush(Value:
 TBrush);
 procedure SetPen(Value:
 TPen);
 procedure SetShape(Value:
 TShapeType);
 protected
 procedure Paint; override;
 public
 constructor Create(AOwner:
 TComponent); override;
 destructor Destroy; override;
 published
 procedure StyleChanged(
 Sender: TObject);
 property Brush: TBrush
 read FBrush write SetBrush;
 property DragCursor;
 property DragMode;
 property Pen: TPen
 read FPen write SetPen;
 property Shape: TShapeType
 read FShape write SetShape;
 property OnDragDrop;
 property OnDragOver;
 property OnEndDrag;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;
 end;

Listing 1

20 The Delphi Magazine Issue 1

➣ private – Only accessible
within the defining unit.

➣ protected – Accessible
to derived classes

➣ public – Full run-time
accessibility

➣ published – Available to the
Object Inspector for
design-time manipulation

Property Definitions
The part that’s really interesting is
the new published section. The
published part of a class declara-
tion effectively corresponds to the
Object Browser interface for that
object. This enables the Object
Browser (or anyone else who’s
interested) to retrieve information
on an object, its properties and
event handlers. There’s nothing
magical about the way that the
Object Browser does this, it simply
makes use of the designer interface
unit, DSGINTF. You can find the
source code to this unit in the
DSGNINTF.PAS source file.

Let’s look in detail at one of the
property declarations in the above
class definition:

property Brush: TBrush
 read FBrush write SetBrush;

This defines a property called
Brush. Because the property is in
the published section of the class,
it will automatically be made
available to the Object Inspector.
Additionally, since it’s a property,
it can be manipulated just like any
normal public element of the class
– property elements are inherently
public.

In the above declaration, the
Brush property is defined as being
of type TBrush – a handle to a
Windows brush object. This is
followed by information which tells
the compiler how to access the
property.

When reading the value of the
Brush property, the compiler
simply references the private
FBrush field. However, when chang-
ing the value of the property, the
SetBrush procedure (also a private
element). This approach allows us
to protect the private elements of
a class from direct access, while at
the same time presenting a

convenient user interface that’s
just as convenient to use as if we
had direct access to public
elements.

Doing things in this way also
allows us to perform other actions
behind the scenes. We’ve just seen
that the mere action of assigning to
a Shape component’s Brush
property will invoke a routine
called SetBrush. Internally, the
SetBrush routine will not only store
the new brush handle, but also
typically redraw the component to
reflect the brush change.

Exception Handling
With today’s increasingly sophisti-
cated applications, exception
handling becomes less of an option
and more of a must-have feature
when designing any serious
programming language. Exception
handling allows you to localise
error handling and recovery to one
area and eliminates the need for
repetitive checking for error
conditions before and after every
operation. Let’s see how this works
in practice.

The Try-Except Block
Consider this code:

function SafeDivide(
 A, B : Integer): Integer;
begin
 try
 {Point 1}
 SafeDivide := A div B;
 except
 {Point 2}
 on EDivByZero do
 SafeDivide := 0;
 end;
 {Point 3}
end;

The simple routine shown above is
responsible for dividing two
integers together and returning the
result.

Pascal veterans will immediately
spot two oddities here – the
appearance of the try and except
keywords. These new keywords
are used to implement the
exception handling mechanism.

In the case we’re looking at, the
try and except statements define a
try-except block of code. Here,

there’s actually only one statement
(the division statement) between
these two keywords but there can
potentially be many. Statements
within this block of code execute
completely normally, starting from
Point 1, but if an exception occurs,
control is immediately transferred
to the except part of the block at
Point 2. If no exception takes place,
then once the except keyword is
reached, execution continues at
Point 3.

The net effect, of course, is that
instead of the user being presented
with a run-time error, this routine
will silently return the value zero
whenever a run-time error occurs.

In a more real-world situation,
there would typically be a lot more
code between the try and except
keywords – code which would
normally be full of lots of messy
error-checking stuff.

By using an exception handling
mechanism, the error checking can
be done after the except keyword
and things become very much
neater.

This concept will perhaps be
more familiar to Microsoft BASIC
(including Visual Basic) program-
mers. BASIC provides a mechanism
called ON ERR, which allows control
to be transferred to a certain point
in a routine whenever a run-time
error takes place. The try-except
mechanism is very similar in
operation.

You’ll also have noticed the on
statement at Point 2 in the above
source code. There are a consider-
able number of different exception
types that can be tested for. In this
case, we’re testing for a divide by
zero condition, but you can also
test for floating point math errors,
file I/O errors, and more.

The Try-Finally Block
In addition to Try-Except blocks,
Delphi’s Pascal language also
provides Try-Finally constructs.
These are particularly useful for
Windows programming where it’s
often necessary to perform a
certain amount of ‘clearing up’,
such as de-allocating temporary
memory buffers, deleting custom
brushes and pens, closing files and
so on. Here’s how it works:

April 1995 The Delphi Magazine 21

procedure TForm1.Button1Click(
 Sender: TComponent);
var
 pMem: Pointer;
begin
 GetMem (pMem, 2048);
 {...}
 FreeMem (pMem, 2048);
end;

In the above example, a 2Kb block
of memory is allocated at the begin-
ning of the routine and deallocated
at the end. That’s fine, but what
would happen if an exception
(such as a floating point error)
were to occur before the FreeMem
call was executed? In this case, the
memory would remain allocated.

Of course, if the run-time error
resulted in the program’s termina-
tion, there’d be no real problem
since Windows would deallocate
the memory anyway. However, if
you were allocating large bitmaps,
pens, or brushes, these items
would remain allocated even after
the program terminated. When
programming with Delphi, the
correct approach is to use a
Try-Finally block, which looks
something like this:

procedure TForm1.Button1Click(
 Sender: TComponent);
var
 pMem: Pointer;
begin
 GetMem (pMem, 2048);
 try
 {...}
 finally
 FreeMem (pMem, 2048);
end;

With this approach, the state-
ment(s) following the finally
keyword will be executed even if
the routine terminates with a
run-time error. This guarantees
that the allocated resource will be
freed no matter what happens.

The AS, IS And IN Keywords
The as and is keywords are used to
implement run-time type checking
and typecasting. For example, the
following statement will determine
whether an object, xObj, is of a
given type:
if xObj is TForm then

This statement will return true if
xObj is a Form component, or if it is
of a type that’s descended from a
Form component.

Similarly, the as keyword can be
used to perform run-time
typecasting, like this:

with xObj as TForm do begin
 {...}
end;

In this example, the xObj object is
treated as a Form component
within the block. The as keyword
will perform internal checking to
ensure that it’s valid to treat the
xObj as if it were a Form component
(specifically, that it is a Form com-
ponent, or is derived from one). If
not valid, then a EInvalidCast
exception will be raised.

The in keyword will be familiar
to most Pascal programmers as a
test of set membership:

if TheInt in [1,3,5,7,9] then
 ...

However, this particular keyword
now has a new meaning within the
context of a USES clause inside
Delphi project files:

uses
 Forms,
 Sdimain in ’SDIMAIN.PAS’
 {SDIAppForm},
 About in ’ABOUT.PAS’
 {AboutBox};

Changes To The Language
The version of Borland Pascal on
which Delphi is based incorporates
a number of useful language en-
hancements. In most cases, these
are backwards-compatible. This
means that they won’t break any
existing code.

However, there are a few pitfalls
for the unwary so read the follow-
ing sections with care.

The Result Variable
When developing a Pascal func-
tion, it’s often useful to be able to
“look” at the return result.
Previously, it wasn’t possible to do
this, since specifying the name of
the function in an expression was
interpreted as a recursive call:

function GetFileHandle(
 fName: PChar): Integer;
begin
 GetFileHandle :=
 _lopen(fName, 0);
 if GetFileHandle = -1 then
 MessageBox(0,
 ’Can’’t open file’,
 ’Error’, mb_ok);
end;

The reference to GetFileHandle in
the if statement will be interpreted
by the compiler as a recursive call
which obviously isn’t what’s
wanted. The compiler will fail to
compile the code anyway, com-
plaining that no arguments have
been supplied for the (supposed)
call to GetFileHandle. In order to get
around this, most Pascal program-
mers use a local variable like this:

function GetFileHandle(
 fName: PChar): Integer;
var fd: Integer;
begin
 fd := _lopen (fName, 0);
 if fd = -1 then
 MessageBox (0,
 ’Can’’t open file’,
 ’Error’, mb_ok);
 GetFileHandle := fd;
end;

There’s nothing wrong with this, of
course, provided that you don’t
mind the unnecessary tedium of
defining a local variable and (more
importantly) remembering to set
up the function result at the end!

The new Result variable does
away with these considerations. It
behaves as a predefined local
variable but it also happens to
correspond to the function result.
Unlike the actual function name,
you can use it anywhere in an
expression without implying a
recursive call. Here’s how you’d
recode the above example:

function GetFileHandle(
 fName: PChar): Integer;
begin
 Result := _lopen (fName, 0);
 if Result = -1 then
 MessageBox (0,
 ’Can’’t open file’,
 ’Error’, mb_ok);
end;

22 The Delphi Magazine Issue 1

This gives the best of both
worlds; concise and elegant yet
without irrelevant variables.

Note: There’s an obvious caveat
here. When porting old code to
Delphi, it’s a good idea to rename
any local or global variables named
Result or potential ambiguities
may arise.

Function Result Types
While on the subject of function
results, Borland have relaxed
the previous restrictions on
permissible function result types.
In the words of the on-line help
documentation:

“Functions can now return any
type, whether simple or complex,
standard or user-defined, except
old-style objects (as opposed to
classes), and files of type text or ‘file
of’. The only way to handle objects
as function results is through object
pointers.”

Open Array Construction
Some time ago, Borland introduced
Open Array parameters, which
allow you to pass an array type as
a parameter to a function or proce-
dure. Inside the called routine, you
can use the built-in Low and High
operators to obtain the lower and
upper array bounds of the array. In
this way, you could, for example,
pass an arbitrarily large array to a
function which would then return
the average value of all the
elements of the array.

Delphi’s version of Pascal makes
this facility even more flexible, by
letting you build an array and pass
it to a routine in a single operation:

Average := CalcAverage([5, 7,
 9, 14, 234, 86]);

The corresponding function
declaration would be:

function CalcAverage(Nums:
 Array of Integer): Integer;

Delphi includes a new routine,
Format, which takes a pointer to a
destination character array, a
format string, and an open array
parameter. In essence, this gives all
the power and flexibility of the C
language’s sprintf statement,

something that’s sure to be good
news for Pascal programmers.

Note: Since the elements of the
array are enclosed in square brack-
ets, this can look just like a set.
Take care not to confuse the two.

Case Statement Optimizations
Borland have made two changes to
the way case statements operate.
Firstly, it’s no longer possible to
have overlapping ranges in a case
statement. For example:

case Errcode of
 7: Writeln(
 ’Disk is write protected’);
 1..100: Writeln(
 ’Unknown error’);
end;

This code will compile fine under
previous versions of the Pascal
compiler but won’t be accepted by
Delphi since 7 obviously overlaps
with the range 1..100.

The second change concerns the
way in which the compiler
generates code for case state-
ments. Basically, if the various case
constants are sorted in ascending
order, then the compiler converts
the case statement into a number of
jumps.

On the other hand, a non-sorted
ordering of case constants will
result in multiple calculations
being carried out. It’s therefore
better to sort your case constants
into ascending order if possible.
For example:

case ErrCode of
 1: Writeln(“This is case 1");
 2: Writeln(“This is case 2");
 5: Writeln(“This is case 5");
 {...}

Using Your Old Code
Delphi is perfectly capable of using
your old code, integrating it into a
new-style Delphi project. If the old
code is in the form of a DLL, then
you can just call the DLL from
Delphi. Existing units can also be
easily integrated into Delphi
programs. Of course, old source
code won’t have any knowledge of
Delphi’s component library and
VCL framework, but provided that
the DLL has been well structured,

it should be relatively easy to move
it across.

But what about OWL, I hear you
cry? Well, admittedly, this could be
something of a problem. You can
certainly use Delphi to compile all
your existing OWL library source
code and applications if you wish
to continue using the OWL applica-
tion framework. It should go
without saying, though, that you
can’t readily mix OWL code with
the new VCL library. At the time of
writing, there’s been no commit-
ment from Borland as regards the
implementation of a 32-bit OWL
library. (Because of the differences
between the Win32 and Win16
APIs, it’s not just a simple matter of
recompiling OWL with a 32-bit
compiler).

My personal advice would be to
bite the bullet and port your appli-
cations to VCL. Not only will you be
able to use all Delphi’s user inter-
face components, (giving your
program a much nicer user inter-
face), but you’ll also be assured of
portability to the world of 32-bits,
be it Windows/NT or Windows 95.

This is probably a good place to
point out the importance of ‘decou-
pling’ the user interface of an appli-
cation from the nuts and bolts of
the program code. Whatever sort
of application you’re writing,
always make a clear distinction be-
tween what the program does and
what the program displays on the
screen. If you always bear this in
mind, then you can put the essence
of your program into units or even
DLLs, completely distinct from
whatever user interface and appli-
cation framework you might be
using. If you’ve adopted this sort of
approach with your OWL applica-
tions, then you will have greatly
simplified the job of moving across
to Delphi and the VCL library.

This article is based on an extract
from Dave’s new book, “Instant
Delphi”, published by Wrox Press.
Dave Jewell is a freelance
consultant/programmer, specialis-
ing in systems-level work under
Windows and DOS. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

April 1995 The Delphi Magazine 23

	Delphi for Pascal Programmers
	New Language Features
	The Class Declaration
	Property Definitions
	Exception Handling
	The Try-Except Block
	The Try-Finally Block
	The AS, IS and IN Keywords
	Changes to the Language
	The Result Variable
	Function Result Types
	Open Array Construction
	Case Statement Optimizations
	Using Your Old Code

